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Distributed Satellite Missions (DSM) will play a
role in future Earth Observing Systems
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Current Pre-Phase A tools are not well suited
for DSM

* Needs in Pre-phase A:
* Check feasibility of meeting requirements
* Evaluate a sufficient number of alternatives
e Conduct trade studies and what-if analyses
* Propagate satellite orbits with sufficient accuracy over long periods of time
* Calculate performance metrics (e.g., mean revisit time) and others (e.g., cost, risk)

* Challenges
* High number of vehicles to simulate
 Combinatorial explosion of alternatives
* Both of these significantly increase computational cost

* TAT-C (AIST14) was developed to address these challenges



Tradespace Analysis Tool for Constellations

(TAT-C, AIST14 project)

* Goal: To Provide a framework to
perform pre-Phase A mission
analysis of DSM

* Handle multiple spacecraft sharing
mission objectives

* Explore tradespace of variables for
pre-defined science, cost and risk
goals and metrics

* Optimize cost and performance
across multiple instruments and
platforms instead of one at a time

* Include sets from smallsats through
flagships

User Interface (Ul)

—————————

Knowledge

Tradespace Search Request (TSR)

F ed with
tradespace analysis

Tradespace Search Iterator (TSI)

Reduction and Metrics (R&M)

Orbit & Coverage Module (0&C)

Cost & Risk Module (C&R)




TAT-C Example of results: Sustainable Land
Imaging

Average Revisit Time across all
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TAT-C’s tradespace search capabilities are

limited

* Currently, TAT-C uses a brute-force
design of experiments approach for
searching the tradespace

* No optimization — just screening of the
tradespace

* Many unpromising architectures are
evaluated

e Cannot start seeing results until all
alternatives have been evaluated




TAT-C ML (AIST16 project)

* Increase the dimensionality and
modeling depth of TAT-C’s trade-
space analysis capabilities with:

* Various trajectories, orbital planes,
mission replanning, orbit and
Maneuver Modeling, etc.

 New modules (instrument, launch,
onboard computing, etc.)

* Optimize the Trade-Space Exploration
by Utilizing Machine Learning and a
Fully Functional Knowledge Base (KB)
to Efficiently Traverse a Large Trade-
Space
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Enhancing tradespace search with Al and ML

* Speed up the search and avoid unnecessary expensive function evaluations

* Baseline search/optimization using a multi-objective evolutionary
algorithm (epsilon-MOEA). Example: min avg revisit time and min cost

* Maintain a pool of operators and use ML to figure out which ones work
best (“reinforcement learning)

* Pool may contain:
 Domain-independent operators: different kinds of Crossover, mutation, etc.

e Or Domain-specific!
* Domain-specific operators may be available before the search or

discovered online
» Use feature extraction techniques (association rule mining, mRMR)



Baseline evolutionary algorithm: e-MOEA

* Evolutionary algorithms mimic
natural evolution

* Main operators:
* Selection
* Crossover
* Mutation

* Many types of crossover/mutation
exist, each with parameters to tune

* Epsilon-MOEA
» Steady-state algorithm

 Maintains an archive of best solutions
found so far

START

v

Create and evaluate
initial population

terminate
Check Termination
Criteria

continue

Generate offspring

Y

Evaluate offspring and
insert into population

v

Update population and
archive

A

Increment Iteration
t<t+1

Baseline evolutionary algorithm



Adaptive operator selection (AOS)

* Pool of operators; ML layer to learn which one(s) work

Create and evaluate

best START initial population
* Credit assignment: Measure performance of each terminate
Operator over time Check Termination
* ¢;. = credit received by o; at iteration t Criteria
* Example: ¢;; f(xP) — f(xot) continue
* Operator selection: Assign solutions to operators Se'e“fpefft"r_ and - :
proportionally to their quality (g; ; = quality of operator = e"l e E
0; at iteration t). For example: Legend : '
Evaluate offspring and Operator,
MOEA related insert into population
_ 1 ) + I Operator,
CIl,t+1 - ( a ql,t a Cl,t AOS related Update population and
archive Operatory
qit+1 ¥ B
pi,t+1 = Pmin —+ (1 — |0| . pmin) . 0] Compute credit and |
j=1 CIj,t+1 assign to+operator
a € [0,1] = adaptation rate Increment Iteration
t—t+1

Pmin = Minimum selection probability

Probability matching operator selection

MOEA+AOS



AOS works with benchmark problems

* We measured performance of 9 different AOS approaches (new and existing) on 26
different benchmarking multi-objective problems (WFG, UF, DTLZ)

* AOS consistently outperform state-of-the-art EA over wide range of problems

* AOS discover the operator(s) that work better for each problem
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Adding knowledge-driven operators

 Domain- and potentially problem-specific operators
* Expressed in first-order logic format
 Stored in knowledge base; can be reused

Heuristic Description

Adds instrument to a random orbit so as to capture a
currently missed synergy

Removes instrument from random orbit so as to

INTERFERENCE eliminate a current interference

Moves random instrument to a better orbit

REMOVE Removes superfluous instrument from a random orbit
SUPERFLUOUS

ADD-TO-SMALL-SAT Adds random instrument to a random small satellite
12O L0AY D8 1 2{0)\Y B ) (EZ Removes random instrument from a random big
SAT satellite
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Lifecycle cost (SFY10M) Lifecycle cost (SFY10M)

Lifecycle cost ($FY10M)

Using knowledge-driven operators is
challengin
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AOS enables using existing knowledge

(adaptive operators better than constraints)
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On-line discovery of new operators

—VU ~
: C F
* New operators can be discovered
online using feature extraction . )
* ApproaCh U: All possible designs
» Use association rule mining (a priori Do e e
algorithm) to search space of
conjunctions of features for target |F|
: 0 hi supp(F) =
region C (top 25% architectures) U]
supp(FNC)

* Use mMRMR to select best 4 features conf(F = C) = s (F) (consistency, specificity)

* Make operators from best features conf(C = F) = Z2PE00) 1\ erage, generality)
supp(C) ’

* Add operators to pool

* Repeat every 1000 iterations

1
MRMR: &; = @;_; U (Fiergggi_l [1 (Fi, O) = Xrjea,, | (Fi'F}')D

relevancy redundancy



New operators also improve search efficiency

Feature Name Arguments Description
Present I; I; is present in at least one of the orbits
Absent I; I; is absent in all orbits
InOrbit 0;,1; I; is assigned to O;
NotInOrbit 0;,1; I; is not assigned to O;
Together L, I, (Ix) I;,I;, (1) are assigned together in any one of the orbits
TogetherInOrbit O0;,1;, I, (I) I, Iy, (I;) are assigned together in O;
Separate I, I;, (Ix) I;,I;,(Ix) are not assigned to the same orbit
EmptyOrbit O; No instrument is assigned in O;
NumOrbitUsed n n is the number of orbits with at least one instrument
NumInstruments (0i),n n is the number of instruments in any orbit (or in orbit O;)
1r
0.8-
0.6~
; o
04 : T 0.92
e-MOEA
——KDO/AOS 088
0.2 ——KDO/R 3000 3500 4000 4500 5000
KDO/C NFE
o—& | \ - i | \ \ |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

NFE

KDO: Knowledge-Driven
Optimization

\AOS: Adaptive Operator
Selection

\R: Random Operator Selection
\C: Operators as Constraints

HV: hypervolume (performance
metric in MOO, large-is-better)

NFE: Number of function
evaluations

Thick lines: Statistically
significantly higher median
than e-MOEA (Wilcoxon rank-
sum,n = 30, P < 0.05)
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Status and future work

* Finalizing overall architecture of TAT-C ML

* Integrating MOEA-AQOS with TAT-C

* Integrating MOEA-AQS with KB

 Demonstration of TAT-C prototype with KB and eps-MOEA by August
* Develop operators for coverage problems

* Integrate an validate AOS capability with offline operators

* Integrate and validate online learning

* Validated tool by August 2019



